Short-Term Load Forecasting with an Ensemble Model Using Densely Residual Block and Bi-LSTM Based on the Attention Mechanism

نویسندگان

چکیده

Short-term load forecasting (STLF) is essential for urban sustainable development. It can further contribute to the stable operation of smart grid. With development renewable energy, improving STLF accuracy has become a vital task. Nevertheless, most models based on convolutional neural network (CNN) cannot effectively extract crucial features from input data. The reason that fundamental requirement adopting space invariance, which be satisfied by received data, limiting performance. Thus, this paper proposes an innovative ensemble model comprises densely residual block (DRB), bidirectional long short-term memory (Bi-LSTM) layers attention mechanism, and thinking. Specifically, DRB adopted potential high-dimensional different types such as multi-scale temperature calendar extracted are Bi-LSTM layer. Then, mechanism assign various weights hidden state focus factors. Finally, proposed two-stage thinking improve generalization. experimental results show produce better performance compared existing ones, almost 3.37–5.94%.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

mortality forecasting based on lee-carter model

over the past decades a number of approaches have been applied for forecasting mortality. in 1992, a new method for long-run forecast of the level and age pattern of mortality was published by lee and carter. this method was welcomed by many authors so it was extended through a wider class of generalized, parametric and nonlinear model. this model represents one of the most influential recent d...

15 صفحه اول

Efficient Short-Term Electricity Load Forecasting Using Recurrent Neural Networks

Short term load forecasting (STLF) plays an important role in the economic and reliable operation ofpower systems. Electric load demand has a complex profile with many multivariable and nonlineardependencies. In this study, recurrent neural network (RNN) architecture is presented for STLF. Theproposed model is capable of forecasting next 24-hour load profile. The main feature in this networkis ...

متن کامل

An Ensemble Model Based on Machine Learning Methods and Data Preprocessing for Short-Term Electric Load Forecasting

The experience with deregulated electricity market has shown the increasingly important role of short-term electric load forecasting in the energy producing and scheduling. However, because of nonlinear, stochastic and nonstable characteristics associated with the electric load series, it is extremely difficult to precisely forecast the electric load. This paper aims to establish a novel ensemb...

متن کامل

Combination Model for Short-Term Load Forecasting

Gas demand possesses dual property of growing and seasonal fluctuation simultaneously, it makes gas demand variation possess complex nonlinear character. From previous studies know single model for nonlinear problem can’t get good results but accurately gas forecast were essential part of an efficient gas system planning and operation. In recent years, lots of scholar put forward combination mo...

متن کامل

Short - Term Load Forecasting

This paper presents a novel hybrid method for short-term load forecasting. The system comprises of two artificial neural networks (ANN), assembled in a hierarchical order. The first ANN is a multilayer perceptron (MLP) which functions as integrated load predictor (ILP) for the forecasting day. The output of the ILP is then fed to another, more complex MLP, which acts as an hourly load predictor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Sustainability

سال: 2022

ISSN: ['2071-1050']

DOI: https://doi.org/10.3390/su142416433